\(\Leftrightarrow\left[{}\begin{matrix}3x-2=-18\\3x-2=18\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{16}{3}\\x=\dfrac{20}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=-18\\3x-2=18\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{16}{3}\\x=\dfrac{20}{3}\end{matrix}\right.\)
(\(\dfrac{-3}{4}\))3x - 1 = \(\dfrac{256}{81}\)
Có thể chia ra 2 trường hợp
a,2.(\(\dfrac{1}{4}\)+x)\(^3\)=(\(-\dfrac{27}{4}\))
b,(x+\(\dfrac{1}{2}\))\(^3\):3=\(\dfrac{-1}{81}\)
c,(\(\dfrac{2}{3}\)-x)\(^2\)=1:\(\dfrac{4}{9}\)
d,(2x-\(\dfrac{1}{5}\))\(^2\)+\(\dfrac{16}{25}\)=1
e,(\(\dfrac{2}{5}\)-3x)\(^2\)-\(\dfrac{1}{5}\)=\(\dfrac{4}{25}\)
tìm x:
\(a,5^x.\left(5^2\right)^3=625\)
\(b,\left(\dfrac{12}{15}\right)^x=\left(\dfrac{5}{4}\right)^{-2}-\left(\dfrac{-3}{5}\right)^4\)
\(c,\left(\dfrac{-3}{4}\right)^{3x-1}=\dfrac{256}{81}\)
\(d,172x^2-7^9:98^3=2^{-3}\)
tìm x biết:
a) \(5^x.\left(5^3\right)^2=625\)
b)\(\left(\dfrac{12}{15}\right)^x=\left(\dfrac{5}{3}\right)^{-5}-\left(-\dfrac{3}{5}\right)^4\)
c)\(\left(-\dfrac{3}{4}\right)^{3x-1}=\dfrac{256}{81}\)
d)\(172x^2-7^9:98^3=2^{-3}\)
\(b,\dfrac{x}{2}-\left(\dfrac{3x}{5}-\dfrac{13}{5}\right)=-\left(\dfrac{7}{5}+\dfrac{7}{10}.x\right)\)
\(c,\dfrac{2x-3}{3}+\dfrac{-3}{2}=\dfrac{5-3x}{6}-\dfrac{1}{3}\)
\(d,\dfrac{2}{3x}-\dfrac{3}{12}=\dfrac{4}{5}-\left(\dfrac{7}{x}-2\right)\)
\(e,2\left(x-1\right)=\left(x-1\right)^2\)
\(\dfrac{3x-2}{4}=\dfrac{9}{3x-2}\)
\(5x-9=5+3x;2^3+0,5x=1,5;\left(5x+1\right)^2=\dfrac{36}{49};\left(\dfrac{-3}{81}\right)^x=-27;2^{x-1}=16\)
Tìm x:
a) \(\dfrac{2x-3}{3}+\dfrac{-3}{2}=\dfrac{5-3x}{6}-\dfrac{1}{3}\)
b) \(\dfrac{2}{3x}-\dfrac{3}{12}=\dfrac{4}{5}-\left(\dfrac{7}{x}-2\right)\)
Tìm GTNN của các biểu thức:
2) B = \(\dfrac{-5}{\left(3x-4\right)^2+2}\)
4) D = \(\dfrac{3x^2+3}{3x^2+7}\)