\(A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{101}}\)
\(5A=1+\dfrac{1}{5}+...+\dfrac{1}{5^{100}}\)
\(5A-A=1+\dfrac{1}{5}+...+\dfrac{1}{5^{100}}-\dfrac{1}{5}-\dfrac{1}{5^2}-...-\dfrac{1}{5^{101}}=1-\dfrac{1}{5^{101}}\Rightarrow A=\dfrac{1-\dfrac{1}{5^{101}}}{4}\)
Đặt `B=1/5+1/5^{2}+1/5^{3}+...+1/5^{101}`
`<=>5B=1+1/5+1/5^{2}+...+1/5^{100}`
`<=>5B-B=(1+1/5+1/5^{2}+...+1/5^{100})-(1/5+1/5^{2}+...+1/5^{101})`
`<=>5B-B=1+1/5+1/5^{2}+...+1/5^{100}-1/5-1/5^{2}-...-1/5^{101}`
`<=>4B=1-1/5^{101}`
`<=>B=(1-1/5^{101})/4`
`@Shả`