\(\dfrac{-1}{x-2}< 0\)
=>x-2>0
=>x>2
\(\dfrac{-1}{x-2}< 0\)
=>x-2>0
=>x>2
giải các phương trình sau
a, 3x -(3x+2) =x+3
b, \(\dfrac{5x-1}{4}+\dfrac{2x-1}{3}=\dfrac{3x}{2}\)
c, \(\left(x^2-3^2\right)+2\left(x-3\right)=0\)
d,\(\dfrac{1}{x-1}+\dfrac{2}{1+x}-\dfrac{4x+6}{x^2-1}=0\)
a) \(x\left(x+4\right)-4x+1=0\)
b) \(2\left(x-3\right)+4=2x+2\)
c) \(\dfrac{x+3}{2}-\dfrac{2x+1}{4}=\dfrac{1}{4}\)
d) \(\dfrac{x^2+3x}{x+3}+3=0\)
e) \(x^2-3x\left(x-1\right)-3x-2=0\)
tìm x:
a)\(\dfrac{-3}{x+5}< 0\) b)\(\dfrac{2x+1}{7}< 0\) c)x\(^2\) - 5x + 4 >0 d)\(\dfrac{x+1}{x-1}< 1\)
cho A=\(\left(\dfrac{2-x}{x+3}-\dfrac{3-x}{x+2}+\dfrac{2-x}{x^2+5x+6}\right):\left(1-\dfrac{x}{x-1}\right)\)
rút gọn
tìm x để A =0
A>0
\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}+\dfrac{x^2+3}{1-x^2}=0\)
\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}+\dfrac{x^2+3}{1-x^2}=0\)
giải các phương trình sau
a, 3(x-1) -3=2(x+3)
b, \(\dfrac{x+4}{4}-\dfrac{x+3}{3}=\dfrac{x+6}{6}\)
c,\(\left(2x-1\right)^2-x^2=0\)
d,\(\dfrac{x}{x+3}-\dfrac{2x}{x-3}-\dfrac{3x}{9-x^2}=0\)
Giải Phương trình
\(x-\dfrac{x+2}{3}< 3x+\dfrac{x}{2}+5
\)
\(\dfrac{x}{2}+\dfrac{1-x}{3}>0\)
\(\left(x-9\right)^2-x\left(x+9\right)< 0\)
trong các pt sau pt nào là pt bậc nhất 1 ẩn:
A. \(\dfrac{1}{x}-3=0\) B. \(-\dfrac{1}{2}x+2\)=0 C. x+y=0 D. 0.x + 1=0
P=(\(\dfrac{4x}{2+x}\) + \(\dfrac{8x^2}{4-x^{ }2}\)) : (\(\dfrac{x-1}{x^2-2x}\) - \(\dfrac{2}{x}\)) (x≠0; x≠2; x≠1)