MD

Để bất đẳng thức \(\left(x+1\right)\left(x+2\right)^2\left(x+3\right)\ge m\) luôn đúng với mọi x thì giá trị nguyên lớn nhất của m là ?

CH
14 tháng 7 2016 lúc 9:38

Cô bố sung cách cm khác ở phân cuối của Ngọc. Cô thấy rằng nó logic hơn, vì phần lập luận dòng cuối của Ngọc có vẻ chưa rõ ràng :)

Sau khi biến đổi đc về dạng \(t^2+t-m\ge0\), áp dụng định lý về dấu tam thức bậc hai ta có:

\(\hept{\begin{cases}1>0\\\Delta< 0\end{cases}\Leftrightarrow1^2+4m< 0\Leftrightarrow m< -\frac{1}{4}}\)

Vậy m nguyên lớn nhất là  -1.

Bình luận (0)
HN
13 tháng 7 2016 lúc 21:26

Ta có : \(\left(x+1\right)\left(x+2\right)^2\left(x+3\right)\ge m\)

\(\Leftrightarrow\left[\left(x+1\right)\left(x+3\right)\right].\left(x+2\right)^2\ge m\)

\(\Leftrightarrow\left(x^2+4x+3\right)\left(x^2+4x+4\right)\ge m\)

Đặt \(t=x^2+4x+3\) \(\Rightarrow t\left(t+1\right)\ge m\Leftrightarrow t^2+t-m\ge0\)

\(\Leftrightarrow\left(t^2+2.t.\frac{1}{2}+\frac{1}{4}\right)-\left(m+\frac{1}{4}\right)\ge0\Leftrightarrow\left(t-\frac{1}{2}\right)^2-\left(m+\frac{1}{4}\right)\ge0\)

Ta có \(\left(t-\frac{1}{2}\right)^2\ge0\Rightarrow m+\frac{1}{4}\le0\Rightarrow m\le-\frac{1}{4}\)

Mà m là số nguyên lớn nhất nên m = -1.

Vậy m = -1 thoả mãn đề bài.

Bình luận (0)
ND
14 tháng 7 2016 lúc 16:48

m=âm 1 là đúng nhé

                 k cho mình nha

Bình luận (0)

Các câu hỏi tương tự
HH
Xem chi tiết
CL
Xem chi tiết
NN
Xem chi tiết
CN
Xem chi tiết
NG
Xem chi tiết
NA
Xem chi tiết
HH
Xem chi tiết
NG
Xem chi tiết
NT
Xem chi tiết