Bài 8: Rút gọn biểu thức chứa căn bậc hai

NL

Đề bài: Cho biểu thức :

M = \(\left(\frac{x}{\sqrt{x}-1}-\sqrt{x}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}+\frac{2-x}{x-\sqrt{x}}\right)\)

a) Rút gọn M.

b) Tính giá trị của M khi \(x=7+4\sqrt{3}\)

c) Tìm \(x\) sao cho M \(=\frac{1}{2}\)

Giúp em với ạ !

PQ
26 tháng 11 2019 lúc 19:31

ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

a) M\(=\frac{x-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}:\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{\sqrt{x}}{\sqrt{x}-1}:\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)\(=\frac{x}{\sqrt{x}+1}\)

b) Khi \(x=7+4\sqrt{3}\Rightarrow\frac{7+4\sqrt{3}}{\sqrt{\left(2+\sqrt{3}\right)^2}+1}=\frac{7+4\sqrt{3}}{3+\sqrt{3}}\)

c)\(M=\frac{1}{2}\Leftrightarrow\frac{x}{\sqrt{x}+1}=\frac{1}{2}\Leftrightarrow\sqrt{x}=2x-1\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{1}{2}\\x^2=4x^2-4x+1\Leftrightarrow3x^2-4x+1=0\Leftrightarrow\left(3x-1\right)\left(x-1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{1}{2}\\\left[{}\begin{matrix}x=\frac{1}{3}\left(l\right)\\x=1\left(l\right)\end{matrix}\right.\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LT
Xem chi tiết
BR
Xem chi tiết
TT
Xem chi tiết
SP
Xem chi tiết
HC
Xem chi tiết
VA
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
TM
Xem chi tiết