MH

Đề bài: A= \(\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\)

Tìm a để \(\sqrt{A}>A\)

Cảm ơn !!!

NT
24 tháng 7 2021 lúc 20:54

Ta có: \(A=\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\)

\(=\dfrac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4\sqrt{a}\left(a-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\)

\(=\dfrac{4\sqrt{a}\left(1+a-1\right)}{\sqrt{a}}\)

\(=4a\)

Để \(\sqrt{A}>A\) thì \(\sqrt{4a}>4a\)

\(\Leftrightarrow2\sqrt{a}-4a>0\)

\(\Leftrightarrow2\sqrt{a}\left(1-2\sqrt{a}\right)>0\)

\(\Leftrightarrow2\sqrt{a}< 1\)

\(\Leftrightarrow a< \dfrac{1}{4}\)

Kết hợp ĐKXĐ, ta được: \(0< a< \dfrac{1}{4}\)

Bình luận (0)

Các câu hỏi tương tự
MH
Xem chi tiết
DH
Xem chi tiết
HT
Xem chi tiết
DH
Xem chi tiết
TT
Xem chi tiết
PU
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết