Ta có: \(A=\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\)
\(=\dfrac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4\sqrt{a}\left(a-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\)
\(=\dfrac{4\sqrt{a}\left(1+a-1\right)}{\sqrt{a}}\)
\(=4a\)
Để \(\sqrt{A}>A\) thì \(\sqrt{4a}>4a\)
\(\Leftrightarrow2\sqrt{a}-4a>0\)
\(\Leftrightarrow2\sqrt{a}\left(1-2\sqrt{a}\right)>0\)
\(\Leftrightarrow2\sqrt{a}< 1\)
\(\Leftrightarrow a< \dfrac{1}{4}\)
Kết hợp ĐKXĐ, ta được: \(0< a< \dfrac{1}{4}\)