H24

Đề 16 bài 4: Cho tam giác ABC biết AB < AC. AD là tia phân giác của góc BAC. Trên cạnh AC lấy điểm M sao cho AM = AB. Chứng minh:
a. Tam giác ABD = tam giác AMD.
b. DB = DM, góc ABD = góc AMD.
c. Kéo dài AB = MD cắt nhau ở N. Chứng minh: tam giác BDN = tam giác MDC.
d. AD vuông góc với BM, BM // NC.

NT
20 tháng 12 2023 lúc 18:06

a: Xét ΔABD và ΔAMD có

AB=AM

\(\widehat{BAD}=\widehat{MAD}\)

AD chung

Do đó: ΔABD=ΔAMD

b: Ta có: ΔABD=ΔAMD

=>DB=DM và \(\widehat{ABD}=\widehat{AMD}\)

c: Ta có: \(\widehat{ABD}+\widehat{NBD}=180^0\)(hai góc kề bù)

\(\widehat{AMD}+\widehat{CMD}=180^0\)(hai góc kề bù)

mà \(\widehat{ABD}=\widehat{AMD}\)

nên \(\widehat{NBD}=\widehat{CMD}\)

Xét ΔDBN và ΔDMC có

\(\widehat{DBN}=\widehat{DMC}\)

DB=DM

\(\widehat{BDN}=\widehat{MDC}\)

Do đó: ΔDBN=ΔDMC

d: Ta có: ΔABD=ΔAMD

=>BD=MD

=>D nằm trên đường trung trực của BM(1)

ta có: AB=AM

=>A nằm trên đường trung trực của BM(2)

Từ (1) và (2) suy ra AD là đường trung trực của BM

=>AD\(\perp\)BM

Ta có: ΔDBN=ΔDMC

=>BN=MC

Xét ΔABC có \(\dfrac{AB}{BN}=\dfrac{AM}{MC}\)

nên BM//NC

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
MT
Xem chi tiết
PM
Xem chi tiết
PM
Xem chi tiết
TV
Xem chi tiết
NH
Xem chi tiết
PT
Xem chi tiết
DT
Xem chi tiết
BV
Xem chi tiết