Đáp án D
Ta có
f n = n 2 + 1 + n 2 + 1 = n 2 + 1 2 + 2 n n 2 + 1 + n 2 + 1
= n 2 + 1 n 2 + 1 + 2 n + 1 = n 2 + 1 n 2 + 1 + 1 .
Do đó
f 2 n − 1 f 2 n = 2 n − 1 2 + 1 . 2 n 2 + 1 2 n 2 + 1 . 2 n + 1 2 + 1 = 2 n − 1 2 + 1 2 n + 1 2 + 1 .
Suy ra
u n = f 1 f 2 . f 3 f 4 . f 5 f 6 ... f 2 n − 1 f 2 n = 1 2 + 1 3 2 + 1 . 3 2 + 1 5 2 + 1 . 5 2 + 1 7 2 + 1 ... 2 n − 1 2 + 1 2 n + 1 2 + 1
⇒ u n = 2 2 n + 1 2 = 1 2 n 2 + 2 n + 1
⇒ lim n u n = lim n 2 n 2 + 2 n + 1 = 1 2 + 1 n + 1 n 2 = 1 2 .