Ta có: \(C=\left|x+5\right|-\left|x-2\right|=\left|-x-5\right|-\left|2-x\right|\)
Sử dụng bất đẳng thức: \(\left|a\right|-\left|b\right|\le\left|a-b\right|\):
\(C=\left|-x-5\right|-\left|2-x\right|\le\left|-x-5-2+x\right|=\left|-7\right|\)
Dấu \(=\)xảy ra khi: \(\left|-x-5-2+x\right|=7\)
\(\Rightarrow\hept{\begin{cases}-x-5\ge0\\2-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-5\\x\le2\end{cases}}}\Rightarrow-5\le x\le2\)
Vậy \(-5\le x\le2\)thì \(MAX\)\(C=7\).