Có 2 TH thỏa mãn: chọn bi trắng hộp 1, bi đỏ hộp 2 và bi đỏ hộp 1, bi trắng hộp 2
\(\Rightarrow C_5^2.C_3^1+C_5^3.C_2^3=...\)
Có 2 TH thỏa mãn: chọn bi trắng hộp 1, bi đỏ hộp 2 và bi đỏ hộp 1, bi trắng hộp 2
\(\Rightarrow C_5^2.C_3^1+C_5^3.C_2^3=...\)
Có 2 hộp chứa các viên bi, hộp thứ 1 có 7 viên bi hồng và 5 viên bi đỏ, hộp thứ 2 có 6 viên bi hồng và 4 viên bi đỏ. Chọn ngẫu nhiên mỗi hộp 2 viên. tính xác suất để các quả cầu được chọn khác màu
Hộp bi thứ nhất có 4 viên bi đỏ, 3 viên bi vàng và 5 viên bi xanh. Hộp bi thứ hai có 2 viên bi đỏ, 6 viên bi vàng và 7 viên bi xanh. Chọn ngẫu nhiên mỗi hộp 2 viên bi, tính xác suất sao cho 4 viên bi được chọn luôn có bi đỏ nhưng không có bi xanh.
A.181/231
B.181/2310
C.181/2301
D. tất cả sai
Hộp A có 4 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh. Hộp B có 7 viên bi trắng, 6 viên bi đỏ và 5 viên bi xanh. Lấy ngẫu nhiên mỗi hộp một viên bi, tính xác suất để hai viên bi được lấy ra có cùng màu
A. 44 135
B. 88 135
C. 45 88
D. 91 135
Một hộp có 10 viên bi màu trắng, 20 viên bi màu xanh và 30 viên bi màu đỏ, mỗi viên bi chỉ có một màu. Có bao nhiêu cách chọn ngẫu nhiên 8 trong số các viên bi thuộc hộp để được 8 viên bi trong đó có đúng một viên bi màu xanh và có đúng 2 viên bi màu đỏ?
A.
B.
C.
D.
Một hộp chứa 5 viên bi đỏ, 6 viên bi xanh và 7 viên bi trắng. Chọn ngẫu nhiên 6 viên bi từ hộp. Xác suất để được 6 viên bi có cả ba màu đồng thời hiệu của số bi xanh và bi đỏ, hiệu của số bi trắng và số bi xanh, hiệu của số bi đỏ và số bi trắng theo thứ tự là ba số hạng liên tiếp của một cấp số cộng bằng:
Bạn Tít có một hộp bi gồm 2 viên đỏ và 8 viên trắng. Bạn Mít cũng có một hộp bi giống như của bạn Tít. Từ hộp của mình, mỗi bạn lấy ra ngẫu nhiên 3 viên bi. Tính xác suất để Tít và Mít lấy được số bi đỏ như nhau
A. 11/25
B.1/120
C. 7/15
D. 12/25
GIÚP EM VỚI Ạ. NGÀY MAI EM NỘP BTVN RỒI Ạ
Bài 1: Có 2 hộp bi. Hộp 1 có 18 bi gồm 8 bi trắng và 10 bi đỏ. Hộp 2 có 14 bi gồm 5 bi trắng và 9 bi đỏ. Người ta lấy ngẫu nhiên từ mỗi hộp 1 bi và từ 2 bi đó lại lấy ngẫu nhiêu ra 1 bi. Tìm xác suất để viên bi lấy ra sau cùng là bi trắng.
Bài 2: Giả sử có 3 kiện hàng với số sản phẩm tốt tương ứng của mỗi kiện là 20, 15,10. Lấy ngẫu nhiên 1 kiện hàng và từ kiện đó lấy hú họa 1 sản phẩm thấy là sản phẩm tốt. Trả sản phẩm đó lại kiện hàng vừa lấy ra, sau đó lại lấy tiếp 1 sản phẩm thì được sản phẩm tốt. Tìm xác suất để các sản phẩm được lấy từ kiện hàng thứ 3. Biết rằng 3 kiện hàng đó đều có 20 sản phẩm
Bài 3: Một bà mẹ sinh 3 người con (mỗi lần sinh 1 con). Giả sử xác suất sinh con trai là 0,5. Tìm xác suất sao cho trong 3 con đó:
a) Có 2 con trai
b) Có không quá 1 con trai
c) Có không ít hơn 1 con trai
Bài 4: Một lo sản phẩm gồm 100 sản phẩm, trong đó có 90 sản phẩm tốt và 10 phế phẩm. Chọn ngẫu nhiên 3 sản phẩm từ lô hàng (chọn 1 lần). Gọi X là số sản phẩm tốt trong 3 sản phẩm lấy ra
a) Tìm phân phối xác suất của X
b) Viết hàm phân phối của X
c) Tính kỳ vọng của X
d) Tính xác suất P[X\(\ge\)1]
Bài 5: Gieo 10 lần đồng tiền cân đối và đồng chất. Gọi X là số lần xuất hiện mặt sấp trong 10 lần gieo đó
a) Tìm phân phối xác suất của X
b) Viết hàm phân phối của X
c) Tính kỳ vọng và phương sai của X
d) Tính xác suất P[X\(\ge\)1], P[0\(\le\)X\(\le\)8]
Bạn Tít có một hộp bi gồm 2 viên đỏ và 8 viên trắng. Bạn Mít cũng có một hộp bi giống như của banjo Tít. Từ hộp của mình, mỗi bạn lấy ra ngẫu nhiên 3 viên bi. Tính xác suất đểTít và Mít lấy được số bi đỏ như nhau.
A. 7 15
B. 12 15
C. 11 25
D. 1 120
Một hộp chứa 5 viên bi màu trắng, 15 viên bi màu xanh và 35 viên bi màu đỏ. Lấy ngẫu nhiên từ hộp ra 7 viên bi. Xác suất để trong số 7 viên bi được lấy ra có ít nhất 1 viên bi màu đỏ là:
A. C 35 1 .
B. C 55 7 − C 20 7 C 55 7 .
C. C 35 7 C 55 7 .
D. C 35 1 . C 20 6 .