Cho số phức z = a + b i a , b ∈ ℝ thoả mãn z+3+i-|z|(2+i)=0 và |z|>1. Tính P=a+2b.
A. P = -1
B. P = 8
C. P = 7
D. P = 5
Có bao nhiêu số phức z thoả mãn z 3 1 - 4 i = 2 - 3 i z ¯ + z
A. 4
B. 1
C. 2
D. 3
Có bao nhiêu số phức z thoả mãn z - 1 z - i = z - 3 i z + i = 1 .
A. 4.
B. 0.
C. 2.
D. 1.
Cho số phức z thoả mãn |z-1-i|=1 Khi 3|z|=2|z-4-4i| đạt giá trị lớn nhất. Tính |z|
A. 2 - 1
B. 2
C. 2 + 1
D. 3
Cho số phức z=a+bi ( a , b ∈ R ) thoả mãn |z-3-3i|=6. Khi P=2|z+6-3i|+3|z+1+5i| đạt giá trị nhỏ nhất. Giá trị của biểu thức a+b bằng
A. 2 - 2 5
B. 4 - 2 5
C. 2 5 - 2
D. 2 5 - 4
Cho số phức z thoả mãn (2+z)i=3-2i. Phần thực của z bằng
A. -2.
B. -3.
C. -4.
D. -5.
Cho số phức z thoả mãn 2|z-1-i|=|z+2-3i|+2|z-4+i|. Giá trị lớn nhất của |z| bằng
A. 17
B. 13
C. 10
D. 2 5
Cho số phức z thoả mãn|z-3+4i|= 2,w= 2z+1-i. Khi đó |w|có giá trị lớn nhất là
A. 16 + 74
B. 2 + 130
C. 4 + 74
D. 4 + 130
Cho số phức z thoả mãn |z-3+4i|=2,w=2z+1-i. Khi đó |w|có giá trị lớn nhất là:
A. 4 + 130
B. 2 + 130
C. 4 + 74
D. 16 + 74