có ai biết giải bài toán này k giúp mình với ?
1,\(\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}}\)
2,\(\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}-\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)
3,\(\dfrac{3}{\sqrt{6}-\sqrt{3}}+\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
4,\(\left(\sqrt{\dfrac{2}{3}-\sqrt{\dfrac{3}{2}}+\dfrac{5}{\sqrt{6}}}\right):\dfrac{6-\sqrt{6}}{1-\sqrt{6}}\)
5,\(\left(\sqrt{75}-3\sqrt{2}-\sqrt{12}\right)\times\left(\sqrt{3}+\sqrt{2}\right)\)
6,\(\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\dfrac{\sqrt{5}+1}{\sqrt{5}-1}\)
7, \(\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
8,\(\dfrac{4}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-2}+\dfrac{6}{\sqrt{3}-3}\)
9,\(\dfrac{1}{4-3\sqrt{2}}-\dfrac{1}{4+3\sqrt{2}}\)
10,\(\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{1}{\sqrt{4}+\sqrt{3}}\)
11,\(\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}+\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
12,\(\dfrac{\sqrt{3}+2\sqrt{2}+\sqrt{3}-2\sqrt{2}}{\sqrt{3}+2\sqrt{2}-\sqrt{3}-2\sqrt{2}}\)
1. Sửa đề:
\(\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}+\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}=\frac{(\sqrt{2+\sqrt{3}})^2+(\sqrt{2-\sqrt{3}})^2}{\sqrt{(2+\sqrt{3})(2-\sqrt{3})}}\)
\(=\frac{2+\sqrt{3}+2-\sqrt{3}}{\sqrt{2^2-3}}=\frac{4}{1}=4\)
2.
\(\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}-\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}=\frac{(\sqrt{2+\sqrt{3}})^2-(\sqrt{2-\sqrt{3}})^2}{\sqrt{(2+\sqrt{3})(2-\sqrt{3})}}\)
\(=\frac{2+\sqrt{3}-(2-\sqrt{3})}{\sqrt{2^2-3}}=\frac{2\sqrt{3}}{1}=2\sqrt{3}\)
3.
\(\frac{3}{\sqrt{6}-\sqrt{3}}+\frac{4}{\sqrt{7}+\sqrt{3}}=\frac{3(\sqrt{6}+\sqrt{3})}{(\sqrt{6}-\sqrt{3})(\sqrt{6}+\sqrt{3})}+\frac{4(\sqrt{7}-\sqrt{3})}{(\sqrt{7}+\sqrt{3})(\sqrt{7}-\sqrt{3})}\)
\(=\frac{3(\sqrt{6}+\sqrt{3})}{3}+\frac{4(\sqrt{7}-\sqrt{3})}{4}=\sqrt{6}+\sqrt{3}+\sqrt{7}-\sqrt{3}=\sqrt{6}+\sqrt{7}\)
4.
\(=\sqrt{\frac{2}{3}-\sqrt{\frac{3}{2}}+\frac{5}{\sqrt{6}}}:\frac{-\sqrt{6}(1-\sqrt{6})}{1-\sqrt{6}}=\sqrt{\frac{2}{3}-\sqrt{\frac{3}{2}}+\frac{5}{\sqrt{6}}}:(-\sqrt{6})\)
\(=-\sqrt{\frac{2}{3}-\sqrt{\frac{3}{2}}+\frac{5}{\sqrt{6}}}.\frac{1}{\sqrt{6}}=-\sqrt{\frac{1}{9}-\frac{\sqrt{6}}{12}+\frac{5\sqrt{6}}{36}}\)
\(=-\sqrt{\frac{1}{9}+\frac{\sqrt{6}}{18}}=-\sqrt{\frac{2+\sqrt{6}}{18}}=-\frac{\sqrt{4+2\sqrt{6}}}{6}\)
5.
\(=(5\sqrt{3}-3\sqrt{2}-2\sqrt{3})(\sqrt{3}+\sqrt{2})=(3\sqrt{3}-3\sqrt{2})(\sqrt{3}+\sqrt{2})\)
\(=3(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})=3(3-2)=3\)
6.
\(=2.\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)
\(=2.\frac{(\sqrt{5}+\sqrt{3})^2}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})}-\frac{(\sqrt{5}+1)^2}{(\sqrt{5}-1)(\sqrt{5}+1)}\)
\(=\frac{2(\sqrt{5}+\sqrt{3})^2}{5-3}-\frac{(\sqrt{5}+1)^2}{5-1}\)
\(=(\sqrt{5}+\sqrt{3})^2-\frac{(\sqrt{5}+1)^2}{4}=8+2\sqrt{15}-\frac{3+\sqrt{5}}{2}\)
7.
\(=\frac{(\sqrt{5}+\sqrt{3})^2+(\sqrt{5}-\sqrt{3})^2}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})}=\frac{8+2\sqrt{15}+8-2\sqrt{15}}{5-3}=\frac{16}{2}=8\)
9.
,\(=\frac{4+3\sqrt{2}-(4-3\sqrt{2})}{(4-3\sqrt{2})(4+3\sqrt{2})}=\frac{6\sqrt{2}}{16-(3\sqrt{2})^2}=-3\sqrt{2}\)
10.
\(=\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}+\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{4}+\sqrt{3})(\sqrt{4}-\sqrt{3})}\)
\(=\frac{\sqrt{2}-1}{1}+\frac{\sqrt{3}-\sqrt{2}}{1}+\frac{\sqrt{4}-\sqrt{3}}{1}=\sqrt{4}-1=1\)
11.
\(=\left[\frac{-\sqrt{7}(1-\sqrt{2})}{1-\sqrt{2}}+\frac{\sqrt{5}(\sqrt{3}+1)^2}{(1-\sqrt{3})(1+\sqrt{3})}\right]:\frac{1}{\sqrt{7}-\sqrt{5}}\)
\(=(-\sqrt{7}-\sqrt{15}-2\sqrt{5}).(\sqrt{7}-\sqrt{5})\)
\(=-[(\sqrt{7}+\sqrt{5})+(\sqrt{15}+\sqrt{5})](\sqrt{7}-\sqrt{5})\)
\(=-[(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})+(\sqrt{15}+\sqrt{5})(\sqrt{7}-\sqrt{5})]\)
\(=-(2+\sqrt{105}-5\sqrt{3}+\sqrt{35}-5)=-(\sqrt{105}-5\sqrt{3}+\sqrt{35}-3)\)
12.
Mẫu số bằng $0$ nên phân số không xác định.
8.
\(=\frac{4(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}+\frac{\sqrt{3}+2}{(\sqrt{3}-2)(\sqrt{3}+2)}+\frac{6(\sqrt{3}+3)}{(\sqrt{3}-3)(\sqrt{3}+3)}\)
\(=\frac{4(\sqrt{3}-1)}{3-1}+\frac{\sqrt{3}+2}{3-4}+\frac{6(\sqrt{3}+3)}{3-9}\)
\(=2(\sqrt{3}-1)-(\sqrt{3}+2)-(\sqrt{3}+3)=-7\)