m^3 - m = (m^2-1)m = (m-1)(m+1)m là tích 3 stn liên tiếp -> chia hết cho 6
m^3 - m = (m^2-1)m = (m-1)(m+1)m là tích 3 stn liên tiếp -> chia hết cho 6
CMR: với mọi số nguyên n thì giá trị biểu thức \(n^3+12n^2-n+6\) luôn chia hết cho 6.
cmr: m^3+5m chia hết cho 6 với mọi số nguyên m
CMR: Với mọi số nguyên n giá trị biểu thức M = ( 2n + 3 )2 – 9 luôn chia hết cho 4.
cmr: với m là số nguyên thì
a, \(m^3-n\)chia hết cho 6
b,\(m^{3+}5m\)và \(m^3-19m\)cũng luôn chia hết cho 8
CMR luôn tồn tại STN n sao cho 5^n+1 chia hết cho 7^2018
CMR1^m+2^m+...+2017^m luôn chia hết cho 1+2+3+...+2017 với mọi m nguyên dương
M.n giúp mk zới -_-
Cho biểu thức P(n) = an+b.n+c, trong đó a,b,c là những số nguyên. Biết rằng với mọi giá trị nguyên dương n, giá trị của biểu thức P(n) luôn chia hết cho một số nguyên dương m cho trước. CMR b2 phải chia hết cho m
1. Chứng minh rằng m^3-13m chia hết cho 6 với mọi m thuộc z
2. Không dùng máy tính bỏ túi, cmr: 685^3+315^3 chia hết 25000
3.CMR: A=75.(4^1975+4^1974+...+4^2+5)+25 chia hết cho 4^1976
4. CMR:a^5-a chia hết cho 5 với mọi số nguyên a
5. a^4-b^4 chia hết cho 5 với mọi số nguyên a,b
Bài 5. CMR: Với mọi số nguyên n giá trị biểu thức M = ( 2n + 3 )^2
– 9 luôn chia hết cho 4.
Cho đa thức \(A=n^3+3n^2+2n\)
a, CMR: A luôn chia hết cho 6 với mọi số nguyên dương n
b, Tìm giá trị nguyên dương n (n < 10) để A chia hết cho 15