+ Áp dụng bđt AM-GM cho 3 số dương a,b và c ta có :
\(a+b+c\ge3\sqrt[3]{abc}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
+ Áp dụng bđt AM-GM cho 3 số dương \(\frac{1}{a},\frac{1}{b},\frac{1}{c}\) ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
Do đó : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\sqrt[3]{abc\cdot\frac{1}{abc}}=9\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)