\(VT=\left|\frac{a^2c+b^2a+c^2b-a^2b-c^2a-b^2c}{abc}\right|=\left|\frac{c\left(a^2-b^2\right)-ab\left(a-b\right)-c^2\left(a-b\right)}{abc}\right|\)
\(VT=\left|\frac{\left(a-b\right)\left(ac+bc-ab-c^2\right)}{abc}\right|=\left|\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{abc}\right|=\frac{\left|a-b\right|.\left|b-c\right|.\left|c-a\right|}{abc}\)
Mà do a, b, c là 3 cạnh của tam giác nên ta luôn có:
\(\left\{{}\begin{matrix}\left|a-b\right|< c\\\left|b-c\right|< a\\\left|c-a\right|< b\end{matrix}\right.\) \(\Rightarrow VT< \frac{abc}{abc}=1\)