Violympic toán 8

LN

Cho a,b,c là 3 số nguyên khác 0 thỏa mãn:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\).CMR:\(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)là số chính phương

AH
17 tháng 7 2019 lúc 13:50

Lời giải:
Ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\Leftrightarrow \frac{ab+bc+ac}{abc}=\frac{1}{abc}\Rightarrow ab+bc+ac=1\)

Khi đó:

\(1+a^2=ab+bc+ac+a^2=(ab+a^2)+(bc+ac)=(a+b)(a+c)\)

\(1+b^2=ab+bc+ac+b^2=(ab+b^2)+(bc+ac)=(b+a)(b+c)\)

\(1+c^2=ab+bc+ac+c^2=(ab+bc)+(ac+c^2)=(c+a)(c+b)\)

\(\Rightarrow (1+a^2)(1+b^2)(1+c^2)=(a+b)(a+c)(b+a)(b+c)(c+a)(c+b)\)

\(=[(a+b)(b+c)(c+a)]^2\) là số chính phương với mọi $a,b,c$ nguyên khác không.

Bình luận (0)

Các câu hỏi tương tự
LS
Xem chi tiết
TT
Xem chi tiết
MK
Xem chi tiết
TL
Xem chi tiết
HT
Xem chi tiết
NQ
Xem chi tiết
LN
Xem chi tiết
QN
Xem chi tiết
QN
Xem chi tiết