Ta có: \(\dfrac{a^3}{a^2+b^2}=a-\dfrac{ab^2}{a^2+b^2}\ge a-\dfrac{ab^2}{2ab}=a-\dfrac{b}{2}\left(1\right)\)
Tương tự: \(\dfrac{b^3}{b^2+c^2}\ge b-\dfrac{c}{2}\left(2\right);\dfrac{c^3}{c^2+a^2}\ge c-\dfrac{a}{2}\left(3\right)\).
Cộng (1), (2), (3) ta có:
\(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\ge a+b+c-\dfrac{a+b+c}{2}=\dfrac{a+b+c}{2}\left(đpcm\right)\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)