Ôn tập chương 1: Căn bậc hai. Căn bậc ba

AD

CMR \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=\left|\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right|\)

Áp dụng tính : \(M=\sqrt{1+999^2+\frac{999^2}{1000^2}}+\frac{999}{1000}\)

NL
6 tháng 8 2020 lúc 8:58

- Gỉa sử \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=\left|\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right|\)

=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}=\left(\left|\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right|\right)^2\)

=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}+\frac{2}{ab}-\frac{2}{b\left(a+b\right)}-\frac{2}{a\left(a+b\right)}\)

=> \(\frac{2}{ab}-\frac{2}{b\left(a+b\right)}-\frac{2}{a\left(a+b\right)}=0\)

=> \(\frac{a+b}{ab\left(a+b\right)}-\frac{a}{ab\left(a+b\right)}-\frac{b}{ab\left(a+b\right)}=0\)

=> \(\frac{a+b-a-b}{ab\left(a+b\right)}=\frac{0}{ab\left(a+b\right)}=0\) (Luôn đúng )

Vậy ....

- Áp dụng : \(M=\sqrt{1+999^2+\frac{999^2}{1000^2}}+\frac{999}{1000}\)

=> \(M=\sqrt{1+999^2+\frac{999^2}{\left(1+999\right)^2}}+\frac{999}{1000}\) ( với \(a=1,b=999\) )

=> \(M=1+999-\frac{999}{1000}+\frac{999}{1000}=1000\)

Bình luận (0)

Các câu hỏi tương tự
BM
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
NH
Xem chi tiết
LH
Xem chi tiết
DT
Xem chi tiết
NL
Xem chi tiết
NN
Xem chi tiết
ML
Xem chi tiết