Violympic toán 8

NL

Cmr: Nếu 1/a + 1/b + 1/c = 1/a+b+c thì (a+b) *(a+c) *(b+c) =0

PL
17 tháng 7 2018 lúc 8:43

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\dfrac{bc+ac+ab}{abc}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ac\right)=abc\)

\(\Leftrightarrow a^2b+abc+a^2c+ab^2+b^2c+abc+bc^2+ac^2=0\)

\(\Leftrightarrow ab\left(a+b+c\right)+bc\left(a+b+c\right)+ac\left(a+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)b\left(a+c\right)+ac\left(a+c\right)=0\)

\(\Leftrightarrow\left(a+c\right)\left(ab+b^2+bc+ac\right)=0\)

\(\Leftrightarrow\left(a+c\right)\left(a+b\right)\left(b+c\right)=0\)

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
MT
Xem chi tiết
PG
Xem chi tiết
OM
Xem chi tiết
TQ
Xem chi tiết
NH
Xem chi tiết
DV
Xem chi tiết