Ôn tập cuối năm phần số học

NT

CMR : n^3 -3n^2 - n +3 chia hết cho 48 với mọi số nguyên lẻ n

TN
5 tháng 8 2017 lúc 8:26

Ta có : \(n^3-3n^2-n+3=n^2.\left(n-3\right)-\left(n-3\right)=\left(n-3\right)\left(n^2-1\right)=\left(n+1\right)\left(n-1\right)\left(n-3\right)\)Vì n là số nguyên lẻ nên n có dạng 2k +1 ( n \(\in N\)*)

Thay n = 2k + 1 vào ta có :

\(\left(2k+1-3\right)\left(2k+1+1\right)\left(2k+1-1\right)=\left(2k-2\right)\left(2k+2\right)2k=2\left(k-1\right).2\left(k+1\right).2k=8.k.\left(k-1\right).\left(k+1\right)⋮8\)

\(\left(k-1\right).k.\left(k+1\right)\) là tích 3 số nguyên liên tiếp nên \(\left(k-1\right).k.\left(k+1\right)⋮2\)

\(\left(k-1\right).k.\left(k+1\right)⋮3\)

=> \(\left(k-1\right).k.\left(k+1\right)⋮6\)

=> \(8.\left(k-1\right).k.\left(k+1\right)⋮48\)

Bình luận (0)

Các câu hỏi tương tự
NM
Xem chi tiết
NP
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
QL
Xem chi tiết
HS
Xem chi tiết
NM
Xem chi tiết
VK
Xem chi tiết
DD
Xem chi tiết