1) ta có A= 4+4^2 +4^3 +4^4 +...+4^120 =( 4+ 4^2 )+ (4^3+4^4) +...+ (4^119+4^120)
=4.(1+4) +4^3.(1+4) +...+4^119.(1+4) = (1+4).(4+4^3+...+4^119) =5 .(4+4^3+..+4^119)
mà 4+4^3+4^119 chia hết cho 4 , UCLN(4,5)=1 =>5.(4+4^3+...+4^119) chia het cho 20 => A chia het cho 20
2) ta coA= 4+4^2+4^3 +...+4^120 = (4+4^2+4^3) +...+ (4^118+4^119+4^120)
=4.(1+4+4^2)+...+4^118.(1+4+4^2) = 21.( 4+..+4^118) chia het cho 21 => A chia het cho 21
do A chia het cho 20, 21 mà UCLN(20,21) =1 nên A chia hết cho 20 .21 => A chia hết cho 420