VP=(a^2)(c^2)+2abcd+(b^2)(d^2)+
+(a^2)(d^2)-2abcd+(b^2)(c^2)
=a^2(c^2+d^2)+b^2(d^2+c^2)
=(a^2+b^2)(c^2+d^2)=VT
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
VP=(a^2)(c^2)+2abcd+(b^2)(d^2)+
+(a^2)(d^2)-2abcd+(b^2)(c^2)
=a^2(c^2+d^2)+b^2(d^2+c^2)
=(a^2+b^2)(c^2+d^2)=VT
Chứng minh các hằng đẳng thức sau:
a) (a2+b2)(c2+d2)=(ac+bd)2+(ad-bc)2
b) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
Chứng minh rằng: a2 + b2 + c2 + d2 >= ab+ac+ad
Chứng minh rằng: ( a 2 + b 2 )( c 2 + d 2 ) = a c + b d 2 + a d - b c 2
Chứng minh rằng: a2 + b2 + c2 + d2 (>= lớn hơn hoặc bằng) ab+ac+ad
CMR a2+b2+c2+d2+e2≥a(b+c+d+e)
cho các số a, b, c thỏa mãn a2+b2=c2+d2=2022 và ad+bc=0. Tính giá trị của biểu thức a3b3+c3d3
Cho a, b, c, d thỏa mãn a + b + c + d = 0; ab + ac + bc = 1. Rút gọn biểu thức P = 3(ab − cd)(bc − ad)(ca − bd) (a 2 + 1)(b 2 + 1)(c 2 + 1) ?
A. -1
B. 1
C. 3
D. -3
Cho: a2+b2+(a-b)2 =c2+d2+(c-d)2
CMR: a4+b4+(a-b)4=c4+d4+(c-d)4
Help me!Tks!
CMR :
a2 + b2 + c2 < 2( ab + bc + ca)
với mọi số thực a,b,c
cho các số dương a b c khác 1 thỏa mãn abc<1 cmr a2 + b2 +c2 -2(ab+bc+ca) > -3