\(a^2+b^2\ge2ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\left(luon-dung\forall a,b\right)\)
dau"=" xay ra \(\Leftrightarrow a=b\)
\(\Rightarrow a^2+b^2\ge2ab\)
\(\Rightarrow b^2+c^2\ge2ac\)
\(\Rightarrow a^2+c^2\ge2ac\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
dau"=" xay ra \(\Leftrightarrow a=b=c\)
\(a^2+b^2\ge2ab\\ \Leftrightarrow a^2-2ab+b^2\ge0\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(luôn.đúng\right)\)
Dấu \("="\Leftrightarrow a=b\)
Ta có \(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\a^2+c^2\ge2ac\end{matrix}\right.\)
Cộng vế theo vế của 3 BĐT, ta được:
\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+bc\right)\\ \Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
Dấu \("="\Leftrightarrow a=b=c\)
Ta có: \(\left(a-b\right)^2\ge0\forall a,b\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow a^2+b^2\ge2ab\forall a,b\)
CMTT ta được:\(\left\{{}\begin{matrix}b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{matrix}\right.\)
\(\Rightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ac\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ac\)