MT

CMR a^2+b^2 > hoặc = với mọi a,b. Từ đó suy ra rằng mọi a,b,c thì a^2+b^2+c^2 > hoặc = ab+bc+ca

MH
11 tháng 9 2021 lúc 19:51

\(a^2+b^2+c^2\text{≥}ab+bc+ca\)

\(2\left(a^2+b^2+c^2\right)\text{≥}2\left(ab+bc+ca\right)\)

\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\text{≥}0\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\text{≥}0\) luôn đúng

Bình luận (0)