\(2^{2020}=4^{1010}\equiv1\left(mod3\right)\)
\(\Rightarrow2^{2020}=3k+1\) với \(k\in Z^+\)
\(\Rightarrow3^{2^{2020}}+10=3^{3k+1}+10=3.27^k+10\)
Lại có \(27\equiv1\left(mod13\right)\Rightarrow27^k\equiv1\left(mod13\right)\)
\(\Rightarrow3.27^k\equiv3\left(mod13\right)\Rightarrow3.27^k+10⋮13\)
Hay \(3^{2^{2020}}+10⋮13\)