GR

CMR 1 số tự nhiên khác 0 có số lượng ước là 1 số lẻ thì số dó là một số chính phương.

Giúp mình nha!

FB
10 tháng 11 2019 lúc 20:03

Gọi số tự nhiên khác 0 bất kì thỏa mãn đề bài là a

+ Nếu a = 1 thì a có duy nhất 1 ước là 1, là số lẻ; a = 1 = 12, là số chính phương, thỏa mãn đề bài

+ Nếu a > 1 => a = \(x^y\).\(^{z^k}\)... (x,z,... là các số nguyên tố; y,k,... là các số tự nhiên khác 0)

=> số ước của a là: (y + 1).(k + 1)... là số lẻ

=> y + 1 là số lẻ; k + 1 là số lẻ; ...

=> y chẵn; k chẵn; ...

=> \(\frac{x}{y}\); \(\frac{z}{k}\); ... là số chính phương

Mà số chính phương x số chính phương = số chính phương => a là số chính phương

Chứng tỏ 1 số tự nhiên khác 0 có số lượng ước là 1 số lẻ thì số tự nhiên đó là 1 số chính phương

Bình luận (0)
 Khách vãng lai đã xóa
FB
10 tháng 11 2019 lúc 20:05

CÁI NÀY ĐÚNG NÈ NHẤT NÈ NHA

Gọi số tự nhiên khác 0 bất kì thỏa mãn đề bài là a

+ Nếu a = 1 thì a có duy nhất 1 ước là 1, là số lẻ; a = 1 = 12, là số chính phương, thỏa mãn đề bài

+ Nếu a > 1 => a =\(x^y\)..\(z^k\). (x,z,... là các số nguyên tố; y,k,... là các số tự nhiên khác 0)

=> số ước của a là: (y + 1).(k + 1)... là số lẻ

=> y + 1 là số lẻ; k + 1 là số lẻ; ...

=> y chẵn; k chẵn; ...

=> \(x^y\); \(z^k\)... là số chính phương

Mà số chính phương x số chính phương = số chính phương => a là số chính phương

Chứng tỏ 1 số tự nhiên khác 0 có số lượng ước là 1 số lẻ thì số tự nhiên đó là 1 số chính phương

Bình luận (0)
 Khách vãng lai đã xóa
DP
7 tháng 12 2019 lúc 23:05

Ta có: các số bình thường (không phải số chính phương) sẽ có ít nhất 2 ước

Các ước sẽ nhân với nhau để tạo ra số đó, mà mỗi lần nhân thì phải nhân 2 số khác nhau với nhau, ví dụ: 14 = 7 . 2 = 1 . 14

Với số chính phương, sẽ có 2 số giống nhau nhân với nhau mà khi viết thì chỉ cần viết 1 lần

=> các số chính phương sẽ có số ước lẻ

Tớ xin lỗi vì cách diễn đạt bị lủng củng .Ú-Ù.

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NH
Xem chi tiết
KF
Xem chi tiết
HN
Xem chi tiết
TT
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
GL
Xem chi tiết
PS
Xem chi tiết
LH
Xem chi tiết