§1. Bất đẳng thức

YH

Cm:

Nếu x,y,z >0 thỏa mãn 

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\)

thì \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\) 

HH
17 tháng 5 2016 lúc 19:11

Giải:

Ta có: x, y, z >0

Áp dụng BĐT Cô si ta có:

\(\left(x+y\right)\ge2\sqrt{xy}\) và \(\left(\frac{1}{x}+\frac{1}{y}\right)\ge2\sqrt{\frac{1}{xy}}\)

=> \(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge2\sqrt{xy}.2\sqrt{\frac{1}{xy}}=4\)

<=> \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\frac{1}{x+y}\le4\left(\frac{1}{x}+\frac{1}{y}\right)\)               (*)

Áp dụng (*) ta có: 

\(\frac{1}{2x+y+z}=\frac{1}{x+y+x+z}=\frac{1}{\left(x+y\right)+\left(x+z\right)}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{z}\right)\)        (1)

\(\frac{1}{x+2y+z}=\frac{1}{x+y+y+z}=\frac{1}{\left(x+y\right)+\left(y+z\right)}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)\)        (2)

\(\frac{1}{x+y+2z}=\frac{1}{x+z+y+z}=\frac{1}{\left(x+z\right)+\left(y+z\right)}\le\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{z}+\frac{1}{y}+\frac{1}{z}\right)\)        (3)

Cộng 2 vế của (1), (2), (3) ta có

\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\) (đpcm)
 

Bình luận (1)
DA
4 tháng 11 2016 lúc 20:31

cảm ơn bạn nhiều

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NL
Xem chi tiết
TV
Xem chi tiết
H24
Xem chi tiết
VH
Xem chi tiết
TT
Xem chi tiết
NC
Xem chi tiết
TV
Xem chi tiết
PN
Xem chi tiết