Do p là số nguyên tố > 3 nên có thể có 2 dạng là 3k+1 và 3k+2
TH1: p = 3k+1
\(a=3\left(3k+1\right)+2+2020\cdot\left(3k+1\right)^2\)
\(\equiv2+1\cdot\left(1\right)^2\equiv0\)(Mod 3)
-> a chia hết cho 3
TH2: p = 3k+2
\(a=3\left(3k+2\right)+2+2020\cdot\left(3k+2\right)^2\)
\(\equiv2+1\cdot2^2\equiv0\)(Mod 3)
-> a chia hết cho 3
Vậy a là hợp số
bn oi nhầm rồi
\(a=3n+2+2020p^2\) chứ ko phải \(a=3p+2+2020p^2\)