đề đúng ko? ( chỗ 2 cái phân số cuối cùng của vế trái ý)
Đề bài trên sai. Đề đúng: CM: \(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{97}{98}.\dfrac{99}{100}>\dfrac{\sqrt{2}}{20}\).
đề đúng ko? ( chỗ 2 cái phân số cuối cùng của vế trái ý)
Đề bài trên sai. Đề đúng: CM: \(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{97}{98}.\dfrac{99}{100}>\dfrac{\sqrt{2}}{20}\).
1) \(x+\sqrt{1-x^2}< x\sqrt{1-x^2}\)
2)\(\dfrac{1}{\sqrt{2x^2+3x-3}}>\dfrac{1}{2x-1}\)
3)\(5\sqrt{x}+\dfrac{5}{2\sqrt{x}}< 2x+\dfrac{1}{2x}+4\)
giúp mình ạ
4) \(\dfrac{x-\sqrt{x}}{1-\sqrt{2\left(x^2-x+1\right)}}\ge1\)
5)\(x^2+x+1>3\sqrt{x}\left(x+1\right)\)
6)\(\dfrac{1}{1-x^2}>\dfrac{3x}{\sqrt{1-x^2}}-1\)
nữa ạ
Bài 1: Cho x,y, z > 0 thỏa mãn xyz = 1.
Chứng minh rằng:
\(\dfrac{\sqrt{1+x^3+y}^3}{xy}\)+ \(\dfrac{\sqrt{1+x^3+z^3}}{xz}\)+ \(\dfrac{\sqrt{1+y^3+z^3}}{yz}\) ≥ \(3\sqrt{3}\)
Bài 2: Choa, b, c,d > 0 thỏa mãn abcd = 1. CMR:
1) \(\dfrac{a^3}{c^6}\)+ \(\dfrac{c^3}{a^6}\)+ \(\dfrac{b^3}{d^6}\)+ \(\dfrac{d^3}{b^6}\) ≥ \(\dfrac{a^2}{c}\)+ \(\dfrac{c^2}{a}+\dfrac{b^2}{d}+\dfrac{d^2}{b}\)
2) \(\dfrac{a^5b^4}{c^{13}}\) + \(\dfrac{b^5c^4}{d^{13}}\) + \(\dfrac{c^5d^4}{a^{13}}\)+ \(\dfrac{d^5a^4}{b^{13}}\) ≥ \(\dfrac{ab^2}{c^3}+\dfrac{bc^2}{d^3}+\dfrac{cd^2}{a^3}\)+ \(\dfrac{da^2}{b^3}\)
Bài 3: Cho a, b,c ,d > 0. CMR:
\(\dfrac{a^2}{b^5}+\dfrac{b^2}{c^5}+\dfrac{c^2}{d^5}+\dfrac{d^2}{a^5}\) ≥ \(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}+\dfrac{1}{d^3}\)
Bài 4: tìm giá trị nhỏ nhất của biểu thức:
A= x + y biết x, y > 0 thỏa mãn \(\dfrac{2}{x}+\dfrac{3}{y}\) = 1
B= \(\dfrac{ab}{a^2+b^2}\) + \(\dfrac{a^2+b^2}{ab}\) với a, b > 0
Bài 5: Với x > 0, chứng minh rằng:
( x+2 )2 + \(\dfrac{2}{x+2}\) ≥ 3
Giúp mk với, mai mk phải kiểm tra rồi!!
Cho các số thực dương a, b, c thỏa: \(\dfrac{1}{c}+\dfrac{1}{b}=\dfrac{3}{4}-\dfrac{1}{a}\). Tìm min:
\(A=\dfrac{\sqrt{b^2+bc+c^2}}{a^2}+\dfrac{\sqrt{a^2+ab+b^2}}{c^2}+\dfrac{\sqrt{c^2+ca+a^2}}{b^2}\).
1) tìm min \(P=\dfrac{2009x^2-6039x+6\sqrt{x^3-2x^2+2x-4}-8024}{x^2-3x-4}\)
2) cho các số thực dương a,b,c thỏa mãn a2+b2+c2=1
cm \(\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}+\sqrt{\dfrac{bc+2a^2}{1+bc-a^2}}+\sqrt{\dfrac{ca+2b^2}{1+ca-b^2}}\ge2+ab+bc+ca\)
Cho 3 số thực dương a, b, c thỏa mãn: \(2\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{3}\). Tìm giá trị lớn nhất của biểu thức
P = \(\dfrac{1}{\sqrt{6a^2+3b^2}}+\dfrac{1}{\sqrt{6b^2+3c^2}}+\dfrac{1}{\sqrt{6c^2+3a^2}}\)
Chứng minh các bất đẳng thức sau :
1. \(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\) ( với a,b>0 )
2. \(\dfrac{1}{\dfrac{1}{a+c}+\dfrac{1}{b+a}}\ge\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{\dfrac{1}{b}}}+\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{d}}\) ( với a,b,c,d>0)
3. a3 + b3 \(\ge\) \(\dfrac{1}{4}\) ( với a+b\(\ge1\) )
Cho \(a,b,c>0\). CMR \(\sqrt{\dfrac{a}{b+c}}+\sqrt[3]{\dfrac{b}{c+a}}+\sqrt[4]{\dfrac{c}{a+b}}\ge\dfrac{7}{12}\cdot2^{\dfrac{6}{7}}\cdot3^{\dfrac{4}{7}}\)
a,b,c>0. CM: \(\dfrac{1}{\sqrt{a}}\) + \(\dfrac{3}{\sqrt{b}}\) + \(\dfrac{8}{\sqrt{3c+2a}}\) \(\ge\) \(\dfrac{16\sqrt{2}}{\sqrt{3\left(a+b+c\right)}}\)