§1. Bất đẳng thức

H24

Bài 1: Cho x,y, z > 0 thỏa mãn xyz = 1.

Chứng minh rằng:

\(\dfrac{\sqrt{1+x^3+y}^3}{xy}\)+ \(\dfrac{\sqrt{1+x^3+z^3}}{xz}\)+ \(\dfrac{\sqrt{1+y^3+z^3}}{yz}\)\(3\sqrt{3}\)

Bài 2: Choa, b, c,d > 0 thỏa mãn abcd = 1. CMR:

1) \(\dfrac{a^3}{c^6}\)+ \(\dfrac{c^3}{a^6}\)+ \(\dfrac{b^3}{d^6}\)+ \(\dfrac{d^3}{b^6}\)\(\dfrac{a^2}{c}\)+ \(\dfrac{c^2}{a}+\dfrac{b^2}{d}+\dfrac{d^2}{b}\)

2) \(\dfrac{a^5b^4}{c^{13}}\) + \(\dfrac{b^5c^4}{d^{13}}\) + \(\dfrac{c^5d^4}{a^{13}}\)+ \(\dfrac{d^5a^4}{b^{13}}\)\(\dfrac{ab^2}{c^3}+\dfrac{bc^2}{d^3}+\dfrac{cd^2}{a^3}\)+ \(\dfrac{da^2}{b^3}\)

Bài 3: Cho a, b,c ,d > 0. CMR:

\(\dfrac{a^2}{b^5}+\dfrac{b^2}{c^5}+\dfrac{c^2}{d^5}+\dfrac{d^2}{a^5}\)\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}+\dfrac{1}{d^3}\)

Bài 4: tìm giá trị nhỏ nhất của biểu thức:

A= x + y biết x, y > 0 thỏa mãn \(\dfrac{2}{x}+\dfrac{3}{y}\) = 1

B= \(\dfrac{ab}{a^2+b^2}\) + \(\dfrac{a^2+b^2}{ab}\) với a, b > 0

Bài 5: Với x > 0, chứng minh rằng:

( x+2 )2 + \(\dfrac{2}{x+2}\) ≥ 3

Giúp mk với, mai mk phải kiểm tra rồi!!

AH
17 tháng 5 2018 lúc 0:04

Câu 1:

Áp dụng BĐT Cauchy:

\(1+x^3+y^3\geq 3\sqrt[3]{x^3y^3}=3xy\)

\(\Rightarrow \frac{\sqrt{1+x^3+y^3}}{xy}\geq \frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)

Hoàn toàn tương tự:

\(\frac{\sqrt{1+y^3+z^3}}{yz}\geq \sqrt{\frac{3}{yz}}; \frac{\sqrt{1+z^3+x^3}}{xz}\geq \sqrt{\frac{3}{xz}}\)

Cộng theo vế các BĐT thu được:

\(\text{VT}\geq \sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{xz}}\geq 3\sqrt[6]{\frac{27}{x^2y^2z^2}}=3\sqrt[6]{27}=3\sqrt{3}\) (Cauchy)

Ta có đpcm

Dấu bằng xảy ra khi $x=y=z=1$

Bình luận (0)
AH
17 tháng 5 2018 lúc 0:11

Câu 4:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{2}{x}+\frac{3}{y}\right)(x+y)\geq (\sqrt{2}+\sqrt{3})^2\)

\(\Leftrightarrow 1.(x+y)\geq (\sqrt{2}+\sqrt{3})^2\Rightarrow x+y\geq 5+2\sqrt{6}\)

Vậy \(A_{\min}=5+2\sqrt{6}\)

Dấu bằng xảy ra khi \(x=2+\sqrt{6}; y=3+\sqrt{6}\)

------------------------------

Áp dụng BĐT Cauchy:

\(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\geq 2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)

\(a^2+b^2\geq 2ab\Rightarrow \frac{3(a^2+b^2)}{4ab}\geq \frac{6ab}{4ab}=\frac{3}{2}\)

Cộng theo vế hai BĐT trên:

\(\Rightarrow B\geq 1+\frac{3}{2}=\frac{5}{2}\) hay \(B_{\min}=\frac{5}{2}\). Dấu bằng xảy ra khi $a=b$

Bình luận (0)
KK
17 tháng 5 2018 lúc 0:41

Bài 1 : Áp dụng bđt Cauchy ta có : \(\sqrt{1+x^3+y^3}\ge\sqrt{3\sqrt[3]{x^3y^3}}=\sqrt{3xy}\)

\(\Rightarrow\dfrac{\sqrt{1+x^3+y^3}}{xy}\ge\dfrac{\sqrt{3xy}}{xy}\)

Biến đổi tương tự cho 2 vế còn lại ta có \(VT\ge\dfrac{\sqrt{3xy}}{xy}+\dfrac{\sqrt{3xz}}{xz}+\dfrac{\sqrt{3yz}}{yz}=a\)

Áp dụng bđt Cauchy cho 3 số thực dương ta có : \(a\ge3\sqrt[3]{\dfrac{\sqrt{27x^2y^2z^2}}{x^2y^2z^2}}=3\sqrt[3]{\sqrt{27}}=3\sqrt{3}\)

\(\Rightarrow VT\ge3\sqrt{3}\left(đpcm\right)\)

Bình luận (1)
AH
17 tháng 5 2018 lúc 1:05

Bài 5:

Áp dụng BĐT Cauchy cho $3$ số:

\((x+2)^2+\frac{2}{x+2}=(x+2)^2+\frac{1}{x+2}+\frac{1}{x+2}\geq 3\sqrt[4]{(x+2)^2.\frac{1}{x+2}.\frac{1}{x+2}}=3\)

Ta có đpcm

Dấu bằng xảy ra khi \((x+2)^2=\frac{1}{x+2}\Leftrightarrow x=-1\) (loại do $x>0$)

Do đó dấu bằng không xảy ra, hay \((x+2)^2+\frac{2}{x+2}>3\)

Bài 3)

Áp dụng BĐT Cauchy cho $5$ số ta có:

\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\geq 5\sqrt[5]{\frac{1}{b^{15}}}=\frac{5}{b^3}\)

Tương tự:

\(\frac{b^2}{c^5}+\frac{b^2}{c^5}+\frac{b^2}{c^5}+\frac{1}{b^3}+\frac{1}{b^3}\geq \frac{5}{c^3}\)

\(\frac{c^2}{d^5}+\frac{c^2}{d^5}+\frac{c^2}{d^5}+\frac{1}{c^3}+\frac{1}{c^3}\geq \frac{5}{d^3}\)

\(\frac{d^2}{a^5}+\frac{d^2}{a^5}+\frac{d^2}{a^5}+\frac{1}{d^3}+\frac{1}{d^3}\geq \frac{5}{a^3}\)

Cộng các BĐ vừa thu được:

\(\Rightarrow 3\left(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\right)+2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\right)\geq 5\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\right)\)

\(\Rightarrow \frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\geq \frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\) (đpcm)

Dấu bằng xảy ra khi $a=b=c=d$

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
TP
Xem chi tiết
PL
Xem chi tiết
SN
Xem chi tiết
PV
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PO
Xem chi tiết