H24

loading...cíu tui cíu tui

NT

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH^2=4\cdot9=36\)

=>\(AH=\sqrt{36}=6\left(cm\right)\)

b: Xét (O) có

ΔAEH nội tiếp

AH là đường kính

Do đó; ΔAEH vuông tại E

=>HE\(\perp\)AE tại E

=>HE\(\perp\)AB tại E

Xét (O) có

ΔAFH nội tiếp

AH là đường kính

Do đó; ΔAFH vuông tại F

=>HF\(\perp\)FA tại F

=>HF\(\perp\)AC tại F

Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

c: Ta có: ΔHEB vuông tại E

mà EM là đường trung tuyến

nên EM=HM

=>\(\widehat{MHE}=\widehat{MEH}\)

mà \(\widehat{MHE}=\widehat{ACB}\)(hai góc đồng vị, HE//AC)

nên \(\widehat{MEH}=\widehat{ACB}\)

Ta có: AEHF là hình chữ nhật

=>\(\widehat{FEH}=\widehat{FAH}\)

mà \(\widehat{FAH}=\widehat{ABC}\left(=90^0-\widehat{HCA}\right)\)

nên \(\widehat{FEH}=\widehat{ABC}\)

\(\widehat{MEF}=\widehat{MEH}+\widehat{FEH}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

Vì AEHF là hình chữ nhật

nên AEHF nội tiếp đường tròn đường kính AH và EF

=>EF là đường kính của (O)

Xét (O) có

EF là đường kính

EM\(\perp\)EF tại E

=>EM là tiếp tuyến của (O)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
H24
Xem chi tiết