AH

Chứng tỏ rằng phân số có dạng 2n+1/3n+2  là phân số tối giản.( dấu / là dấu phân số)

CN
28 tháng 3 2016 lúc 20:40

Gọi ước chung lớn nhất của 2n + 1 và 3n + 2 là x , ta có:

3( 2n + 1 ) - 2( 3n + 2) = -1 chia hết cho x

=> x thuộc -1;1

Vậy 2n + 1 và 3n + 2 là hai số nguyên tố cùng nhau. Vậy phân số có dạng 2n+1 / 3n + 2 là phân số tối giản

Bình luận (0)
TN
28 tháng 3 2016 lúc 20:41

Gọi ( 2n + 1 , 3 n + 2 ) là d ( d thuộc Z )

=> 2n + 1 chia hết cho d => 3 ( 2n + 1 ) chia hết cho d => 6 n + 3 chia hết cho d

     3n + 2 chia hết cho d=> 2 ( 3n + 2 ) chia hết cho d => 6n + 4 chia hết cho d

=> (6n+4) - ( 6n + 3 ) chia hết cho d

=> 1 chia hết cho d => d thuộc Ư ( 1 ) ={ -1 ; 1 }

=> 2n + 1 / 3n + 2 là phân số tối giản ( đpcm)

Bình luận (0)
LD
28 tháng 3 2016 lúc 20:49

Gọi ƯC nguyên tố của 2n+1 và 3n+2 là d

ta có :2n+1chia hết cho d

         3n+2chia hết cho d

=> 6n+3-(6n+4)chia hết cho d

=>-1chia hết cho d=> d=1

Vậy 2n+1 và 3n+2 là hai số nguyên tố cùng nhau =>2n+1/3n+2 là phân số tối giản

Bình luận (0)

Các câu hỏi tương tự
NP
Xem chi tiết
NV
Xem chi tiết
NT
Xem chi tiết
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
NH
Xem chi tiết
HT
Xem chi tiết
VT
Xem chi tiết