LH

chứng tỏ rằng nếu n là số nguyên tố lớn hơn 3 và 2n +1 cũng là số nguyên tố thì 4n+1 là hợp số

HD
6 tháng 5 2015 lúc 9:26

Nếu n là số nguyên tố lớn hơn 3 thì n=3k+1 hoặc n=3k+2

Trường hợp 1) Nếu n=3k+1 thì 2n+1=2.(3k+1)+1=2.3k+2+1=6k+3 mà 6k+3 chia hết cho 3 nên 2n+1 là hợp số. Suy ra: n khác 3k+1.

Trường hợp 2) Nếu n=3k+2 thì 2n+1=2.(3k+2)+1=2.3k+2.2+1=6k+4+1=6k+5 không chia hết cho số nào cả ngoại trừ 1 và 6k+5 nên 2n+1 là số nguyên tố nên n=3k+2.

Ta có:4n+1=4.(3n+2)+1=4.3n+4.2+1=12n+8+1=12n+9 chia hết cho 1;3;12n+9 nên 4n +1 là hợp số. 

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
LL
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
NV
Xem chi tiết
TL
Xem chi tiết
PL
Xem chi tiết
HX
Xem chi tiết
NH
Xem chi tiết