NH

chứng tỏ rằng giá trị của biểu thức A = 5 + 52 + 53 + ... + 520 là bội của 30

PD
19 tháng 2 2021 lúc 10:18

số số hạng của S là  (20-1)/1+1=20 ( số hạng)

có 5+25=5+5^2=30

chứng tỏ rằng giá trị của biểu thức A = 5 + 52 + 53 + ... + 520 là bội của 30

vì 20/2=10( nhóm) nên ta có 

S = (5+5^2) + ( 5^3 +5^4)+......+ (5^19 + 5^20)

S= 30 +5^2(5+5^2)+.....+5^18(5+5^2)

S=30.1+5^2.30+....+5^18.30

S=30(1+5^2+...+5^18)

vì 30 chia hết cho 30 và 1+5^2 +....+5^18 thuộc Z

suy ra S chia hết cho 30

suy ra S là bội của 30( đpcm)

vậy bài toán đã được chứng minh

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
PN
Xem chi tiết
NL
Xem chi tiết
DT
Xem chi tiết
TL
Xem chi tiết