MN

chứng tỏ rằng \(\frac{n+1}{2n+3}\)( n ϵ N) là phân số tối giản

DL
14 tháng 3 2016 lúc 22:48

Gọi ƯCLN(n+1;2n+3)=d

=>n+1 chia hết cho d=>2(n+1) chia hết cho d hay 2n+2 chia hết cho d

=>2n+3 chia hết cho d

=>2n+3-(2n+2) chia hết cho d

=>1 chia hết cho d hay d=1

Do đó, ƯCLN(n+1;2n+3)=1

Vậy (n+1)/(2n+3) (nEN)là p/s tối giản

Bình luận (0)
NQ
24 tháng 5 2017 lúc 19:45

Gọi \(d=ƯCLN\left(n+1;2n+3\right)\)

Do đó \(d\inƯC\left(n+1;2n+3\right)\)

\(\Rightarrow n+1⋮d;2n+3⋮d\)

\(\Rightarrow2n+2⋮d;2n+3⋮d\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow\) n+1 và 2n+3 là hai số nguyên tố cùng nhau.

Vậy phân số \(\dfrac{n+1}{2n+3}\) tối giản với \(\forall n\in N\).

Bình luận (0)

Các câu hỏi tương tự
LN
Xem chi tiết
NY
Xem chi tiết
TG
Xem chi tiết
HT
Xem chi tiết
HP
Xem chi tiết
DN
Xem chi tiết
CD
Xem chi tiết
CD
Xem chi tiết
TG
Xem chi tiết