Bài 5: Ôn tập chương Số phức

SK

Chứng tỏ rằng \(\dfrac{z-1}{z+1}\) là số thực khi và chỉ khi \(z\) là một số thực khác -1 ?

NH
24 tháng 5 2017 lúc 9:20

Hiển nhiên nếu \(z\in\mathbb{R},z\ne-1\) thì \(\dfrac{z-1}{z+1}\in\mathbb{R}\)

Ngược lại, nếu \(\dfrac{z-1}{z+1}=a\in\mathbb{R}\) thì \(z-1=az+a\)\(a\ne1\)

Suy ra \(\left(1-a\right)z=a+1\Rightarrow\)\(z=\dfrac{a+1}{1-a}\in\mathbb{R}\) và hiển nhiên \(z\ne-1\)

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
AH
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
NL
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết