Bài 5: Ôn tập chương Số phức

SK

Trên mặt phẳng Oxy, tìm tập hợp điểm biểu diễn các số phức \(z\) thỏa mãn điều kiện \(\left|z-i\right|=\left|\left(1+i\right)z\right|\)

AH
5 tháng 7 2017 lúc 16:26

Giải:

Đặt \(z=a+bi\) với $a,b$ là các số thực

Ta có:

\(|z-i|=|(1+i)z|\Leftrightarrow |a+i(b-1)|=|z||1+i|=|a+bi|\sqrt{2}\)

\(\Leftrightarrow a^2+(b-1)^2=2(a^2+b^2)\)

\(\Leftrightarrow a^2+(b+1)^2=2\)

Vậy tập hợp biểu diễn số phức $z$ nằm trên đường tròn tâm \((0,-1)\) bán kính \(R=\sqrt{2}\)

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết