Bài 5: Ôn tập chương Số phức

SK

Tìm số phức \(z\) thỏa mãn : \(\left|z\right|=\sqrt{2}\) và \(z^2\) là số thuần ảo ?

AH
5 tháng 7 2017 lúc 15:59

Giải:

Đặt \(z=a+bi(a,b\in\mathbb{R})\Rightarrow z^2=a^2-b^2+2abi\)

\(z^2\) thuần ảo nên \(a^2-b^2=0\Rightarrow a^2=b^2\)

\(|z|=\sqrt{2}\rightarrow a^2+b^2=2\)

Từ hai điều trên suy ra \(a^2=b^2=1\Rightarrow a=\pm 1,b=\pm 1\)

Vậy tập hợp số phức \(z\)\(\left \{ \pm 1+i, 1\pm i \right \}\)

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
AH
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết