H24

Chứng minh rằng đa thức \(\dfrac{x^2+x+1}{-2x^2+2x-2}\) luôn nhận giá trị âm với mọi x

NT
11 tháng 11 2023 lúc 20:11

Đặt \(A=\dfrac{x^2+x+1}{-2x^2+2x-2}\)

\(x^2+x+1=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}>0\forall x\)

\(-2x^2+2x-2\)

\(=-2\left(x^2-x+1\right)\)

\(=-2\left(x^2-x+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

\(=-2\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\)

\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{2}< =-\dfrac{3}{2}< 0\forall x\)

Do đó: \(A=\dfrac{x^2+x+1}{-2x^2+2x-2}< 0\forall x\)

Bình luận (0)
H24
11 tháng 11 2023 lúc 20:17

\(\dfrac{x^2+x+1}{-2x^2+2x-2}=\dfrac{x^2+x+1}{-2\left(x^2-x+1\right)}\)

Ta thấy:

\(x^2+x+1\\=x^2+2\cdot x\cdot\dfrac12+\left(\dfrac12\right)^2-\left(\dfrac12\right)^2+1\\=\left(x+\dfrac12\right)^2+\dfrac34\)

Vì \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)

hay \(x^2+x+1>0\forall x\) (1)

Lại có:

\(x^2-x+1\\=x^2-2\cdot x\cdot\dfrac12+\left(\dfrac12\right)^2-\left(\dfrac12\right)^2+1\\=\left(x-\dfrac12\right)^2+\dfrac34\)

Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)

hay \(x^2-x+1>0\forall x\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{x^2+x+1}{x^2-x+1}>0\forall x\)

\(\Rightarrow\dfrac{x^2+x+1}{-2\left(x^2-x+1\right)}< 0\forall x\)

hay đa thức \(\dfrac{x^2+x+1}{-2x^2+2x-2}< 0\forall x\)

\(\text{#}Toru\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LD
Xem chi tiết
LD
Xem chi tiết
LN
Xem chi tiết
VT
Xem chi tiết
DD
Xem chi tiết
DC
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết