câu trả lời bạn nè :
+ ta có số nguyên tố có số lượng ước là 2,đó 1 số chẵn,vậy số đó không thể là số nguyên tố=> số đó là hợp sỗ
nên ta có thể đặt n = p1^k1.p2^k2...pr^kr (phân tích ra thừa số nguyên tố)
số ước của n là (k1 + 1)(k2 + 1)..(kr + 1)
theo đề bài thì (k1 + 1)(k2 + 1)..(kr + 1) là số lẽ
=> k1,k2,..kr tất cả phải hoàn toàn là số chẵn,bởi vì chỉ cần một ki lẻ thì toàn bộ tích đó là số lẽ
nghĩa là k1 = 2k1',k2 = 2k2',...,kr = 2kr'
suy ra n = [p1^k1'.p2^k2'...prkr']^2 là 1 số chính phương