\(1+5+5^2+...+5^{2021}\)
\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{2019}+5^{2020}+5^{2021}\right)\)
\(=1\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+...+5^{2019}\left(1+5+5^2\right)\)
\(=1.31+5^3.31+...+5^{2019}.31\)
\(=31.\left(1+5^3+...+5^{2019}\right)⋮31\)
Vậy \(1+5+5^2+...+5^{2019}⋮31\)
(1+5+52+...+52021)⋮31
<=>[(1+5+52)+(53+54+56)+....+(52019+52020+52021)]⋮31
<=>[1.31+53.(1+5+52)+...+52019.(1+5+52)]⋮31
<=>(1.31+53.31+...+52019.31)⋮31
<=>[31.(1+53+....+52019)]⋮31
Vì 31⋮31 nên 1+5+52+...+52021⋮31