JJ

chứng tỏ mọi phân số có dạng n+3/2n+7 là phân số tối giản với n thuộc N

 

NU
10 tháng 2 2018 lúc 18:46

gọi d là ƯC(n+3;2n+7)            (1)

\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+7⋮d\end{cases}}}\Rightarrow\hept{\begin{cases}2n+6⋮d\\2n+7⋮d\end{cases}}\)

\(\Rightarrow\left(2n+7\right)-\left(2n+6\right)⋮d\)

\(\Rightarrow2n+7-2n-6⋮d\)

\(\Rightarrow\left(2n-2n\right)+\left(7-6\right)⋮d\)

\(\Rightarrow0+1⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=\left\{-1;1\right\}\)      (2)

\(\left(1\right)\left(2\right)\RightarrowƯC\left(n+3;2n+7\right)=\left\{-1;1\right\}\)

vậy \(\frac{n+3}{2n+7}\) là p/s tối giản \(\forall n\in N\)

Bình luận (0)
H24
10 tháng 2 2018 lúc 19:21

Gọi d \(\in\)ƯC ( n + 3 ; 2n + 7 )

Theo bài ra ta có :

n + 3 \(⋮\)d ; 2n + 7 \(⋮\)d

=> 2 ( n + 3 ) \(⋮\)d ; 2n + 7 \(⋮\)d

=> 2n + 6 \(⋮\)d ; 2n + 7 \(⋮\)d

=> ( 2n + 7 ) - ( 2n + 6 ) \(⋮\)d

=> 1 \(⋮\)d

Vậy \(\frac{n+3}{2n+7}\)là phân số tối giản với n \(\in N\)

Bình luận (0)

Các câu hỏi tương tự
HD
Xem chi tiết
VK
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
CT
Xem chi tiết
HH
Xem chi tiết
LB
Xem chi tiết
NP
Xem chi tiết