Chứng minh các hằng đẳng thức : a, \(\left(a+b+c\right)^3-a^3-b^3-c^3=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
b, \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Chứng minh rằng: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2c^2-ab-bc-ca\right)\)
Chứng minh rằng :
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2c^2-ab-bc-ca\right)\)
Chứng minh rằng: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2c^2-ab-bc-ca\right)\)
\(CMR:a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
Cho a,b,c >0 Chứng minh rằng :
\(\frac{c\left(a^2+b^2\right)^2}{b^3\left(ab+c^2\right)}+\frac{b\left(c^2+a^2\right)^2}{a^3\left(ac+b^2\right)}+\frac{a\left(b^2+c^2\right)^2}{c^3\left(bc+a^2\right)}\ge\frac{2\left(a^2b+b^2c+c^2a\right)}{abc}\)
chứng minh các hằng đẳng thức
a. (x+a).(x+b) = \(x^2+\left(a+b\right).x+a.b\)
b. (x+a).(x+b).(x+c)= \(x^3+\left(a+b+c\right).x^2+\left(ab+bc+ca\right).x+abc\)
c. (a+b+c).\(\left(a^2+b^2+c^2-ab-bc-ca\right)=a^3+b^3+c^3-3abc\)
Hôm nay mình lại post bài lên nữa đây :D( lần này thì các bạn khỏi lo sai đề giống lần trước nhé,lần trước mình bất cẩn quá :D )
1.Với \(a,b,c>0\).Chứng minh:
\(\left[\left(a^2+b^2+c^2\right)\left(a+b+c\right)+3abc\right]^2\ge2\left[a^2+b^2+c^2+\left(a+b+c\right)^2\right]\left[a^3b+b^3c+c^3a+abc\left(a+b+c\right)\right]\)
2.Với \(\hept{\begin{cases}a,b,c>0\\a+b+c=3\end{cases}}\).Chứng minh:
\(\frac{a}{b^2+c}+\frac{b}{c^2+a}+\frac{c}{a^2+b}\ge\frac{3}{2}\)
3.Với \(a,b,c>0\).Chứng minh:
\(ab\left(b^2+ca\right)+bc\left(c^2+ab\right)+ca\left(a^2+bc\right)\ge2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\frac{1}{2}\left(a+b+c\right)[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2]=a^3+b^3+c^3-3abc\)
Chứng minh hằng đẳng thức trên