§1. Bất đẳng thức

QA

Chứng minh:

\(a^2+\dfrac{b^2}{a^2}+\dfrac{1}{b^2}\ge a+\dfrac{b}{a}+\dfrac{1}{b}a,b\ge0\)

NL
15 tháng 1 2021 lúc 20:19

\(a^2+1\ge2a\) ; \(\dfrac{b^2}{a^2}+1\ge\dfrac{2b}{a}\) ; \(\dfrac{1}{b^2}+1\ge\dfrac{2}{b}\)

\(\Rightarrow a^2+\dfrac{b^2}{a^2}+\dfrac{1}{b^2}+3\ge a+\dfrac{b}{a}+\dfrac{1}{b}+a+\dfrac{b}{a}+\dfrac{1}{b}\ge a+\dfrac{b}{a}+\dfrac{1}{b}+3\sqrt[3]{\dfrac{ab}{ab}}\)

\(\Rightarrow a^2+\dfrac{b^2}{a^2}+\dfrac{1}{b^2}+3\ge a+\dfrac{b}{a}+\dfrac{1}{b}+3\)

\(\Rightarrow\) đpcm

Dấu "=" xảy ra khi \(a=b=1\)

Bình luận (1)

Các câu hỏi tương tự
PT
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
DA
Xem chi tiết
HN
Xem chi tiết
H24
Xem chi tiết
MT
Xem chi tiết