Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bài 1: Căn bậc hai

BA

Chứng minh rằng:\(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+....+\dfrac{1}{\sqrt{79}+\sqrt{80}}>4\)

AH
20 tháng 3 2019 lúc 10:56

Lời giải:

\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)

\(2A=\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{3}+\sqrt{4}}+...+\frac{2}{\sqrt{79}+\sqrt{80}}\)

\(>\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+....+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\)

\(2A>\frac{(\sqrt{2}-\sqrt{1})(\sqrt{2}+\sqrt{1})}{\sqrt{1}+\sqrt{2}}+\frac{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}{\sqrt{2}+\sqrt{3}}+....+\frac{(\sqrt{80}-\sqrt{79})(\sqrt{80}+\sqrt{79})}{\sqrt{79}+\sqrt{80}}+\frac{(\sqrt{81}-\sqrt{80})(\sqrt{81}+\sqrt{80})}{\sqrt{80}+\sqrt{81}}\)

\(2A>(\sqrt{2}-\sqrt{1})+(\sqrt{3}-\sqrt{2})+...+(\sqrt{80}-\sqrt{79})+(\sqrt{81}-\sqrt{80})\)

\(2A>\sqrt{81}-\sqrt{1}=8\)

\(A>4\) (đpcm)

Bình luận (0)

Các câu hỏi tương tự
QN
Xem chi tiết
TN
Xem chi tiết
QN
Xem chi tiết
DD
Xem chi tiết
NL
Xem chi tiết
TL
Xem chi tiết
VQ
Xem chi tiết
H24
Xem chi tiết
NU
Xem chi tiết