H24

Chứng minh rằng : Vs mọi số nguyên dương thì : \(3^{n+2}-2^{n+2}+3^n-2^n\)chia hết cho 10

LT
22 tháng 11 2018 lúc 22:40

Đây bạn 

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.\left(2.5\right)\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n-2^{n-1}\right)\)Chia hết cho 10

Suy ra \(3^{n+2}-2^{n+2}+3^n-2^n\)chia hết cho 10. k cho mình nha :V

Bình luận (0)
NL
22 tháng 11 2018 lúc 22:44

thấy 3n+2 +3n = 3( 32+1) = 3n.10 chia hết cho 10 với mọi n nguyên dương

và 2n+2 +2n = 2n(22+1) = 2n.5 cũng chia hết cho 10 với mọi n nguyên dương.

=> đpcm

Bình luận (0)

Các câu hỏi tương tự
Xem chi tiết
LT
Xem chi tiết
NN
Xem chi tiết
TA
Xem chi tiết
NH
Xem chi tiết
LH
Xem chi tiết
AM
Xem chi tiết
HN
Xem chi tiết
VD
Xem chi tiết