\(A=\frac{n}{3}+\frac{n^2}{2}+\frac{n^3}{6}=\frac{2n+3n^2+n^3}{6}=\frac{\left(n^3+n^2\right)+\left(2n^2+2n\right)}{6}\)
\(=\frac{n^2\left(n+1\right)+2n\left(n+1\right)}{6}=\frac{n\left(n+1\right)\left(n+2\right)}{6}\)
Vì \(n\left(n+1\right)\left(n+2\right)\) là tích hai số nguyên liên tiếp nên \(n\left(n+1\right)\left(n+2\right)⋮\)2 và 3
Mà (2;3) = 1 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\)
Hay \(\frac{n\left(n+1\right)\left(n+2\right)}{6}\) là số nguyên
Vậy \(A\) luôn có gt là số nguyên
out game over
iam do not know