gúp tôi nhé
chứng minh rằng
nếu 1/x- 1/y - 1/z = 1 và x = y + z thì 1/x2 + 1/y 2+ 1/z2 = 1
nhanh tui tik cho
Nếu x + y + z = 1 , x 2 + y 2 + z 2 =1 và x 3 + y 3 + z 3 =1 , chứng minh rằng x y z = 0 ?
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
Chứng minh rằng nếu x+y+z= a và 1/x+1/y+1/z=1/a thì tồn tại trong ba số x,y,z bằng a
chứng minh rằng nếu 1/x-1/y -1 =1 và x=y+z thì \(\frac{1}{x^2}\) + \(\frac{1}{y^2}\) + \(\frac{1}{z^2}\) = 1
Chứng minh rằng nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\) với x khác y, yz,xz khác 1, x, y, z khác 0 thì \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Chứng minh rằng:
a, nếu x+y=1 thì \(\frac{x}{y^3-1}+\frac{y}{x^3-1}+\frac{2\left(xy-2\right)}{x^2y^2+3}=0\)
b, nếu x,y,z khác -1 thì\(\frac{xy+2x+1}{xy+x+y+1}+\frac{yz+2y+1}{yz+z+y+1}+\frac{zx+2z+1}{zx+z+x+1}=3\)
c, Cho x,y,z đôi một khác nhau thỏa mãn\(\frac{x}{y-z}+\frac{y}{z-x}+\frac{z}{x-y}=0\) thì\(\frac{x}{\left(y-z\right)^2}+\frac{y}{\left(z-x\right)^2}+\frac{z}{\left(x-y\right)^2}=0\)
Chứng minh Nếu 1/x +1/y+1/z= 1/x+y+z thì 1/x²⁰²³ + 1/y²⁰²³ +1/z²⁰²³=1/x²⁰²³ + y²⁰²³+z²⁰²³
1) Chứng minh rằng nếu: xyz=1 thì \(\frac{1}{1+x+xy}\)+\(\frac{1}{1+y+yz}\)+\(\frac{1}{1+z+zx}\)=1
2) Cho \(\frac{x^2}{x+y}\)+\(\frac{y^2}{y+z}\)+\(\frac{z^2}{z+x}\)=2017. Tính: \(\frac{x^2}{x+y}\)+\(\frac{z^2}{y+z}\)+\(\frac{x^2}{z+x}\)