\(\left\{{}\begin{matrix}n+5⋮d\\n+4⋮d\end{matrix}\right.\Leftrightarrow d=1\)
Vậy: n+5 và n+4 là hai số nguyên tố cùng nhau
\(\left\{{}\begin{matrix}n+5⋮d\\n+4⋮d\end{matrix}\right.\Leftrightarrow d=1\)
Vậy: n+5 và n+4 là hai số nguyên tố cùng nhau
a) chứng tỏ rằng với mọi số tự nhiên n thì tích (n+4) (n+5) chia hết cho 2
b) chứng minh n+2012 và n+2013 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n.
Chứng minh rằng với mọi số nguyên tố n, các số (n+1) và (n+2) là các số nguyên tố cùng nhau.
Chứng minh rằng hai số 2n + 1 và 6n + 5 là hai số nguyên tố cùng nhau với mọi n thuộc N .
Chứng minh rằng hai số n 1 và 3n 4 là hai số nguyên tố cùng nhau với mọi giá trị của n.
Chứng minh rằng hai số: n+1 và 3n+4 là hai số nguyên tố cùng nhau với mọi giá trị của n.
Chứng minh rằng hai số: n+1 và 3n+4 là hai số nguyên tố cùng nhau với mọi giá trị của n.
Chứng minh rằng 6n+5 và 8n+6 là hai số nguyên tố cùng nhau với mọi số tự nhiên n.
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4