V2

Chứng minh rằng \(\left(x^2+2\right)\left(y^2+2\right)\left(z^2+2\right)>9\left(xy+yz+zx\right)\)

Biết rằng \(xyz>0\)

NL
26 tháng 12 2021 lúc 15:13

Theo nguyên lý Dirichlet, trong 3 số \(x^2;y^2;z^2\) luôn có ít nhất 2 số cùng phía so với 1

Không mất tính tổng quát, giả sử đó là \(x^2\) và \(y^2\)

\(\Rightarrow\left(x^2-1\right)\left(y^2-1\right)\ge0\)

\(\Rightarrow x^2y^2\ge x^2+y^2-1\)

\(\Rightarrow x^2y^2+2x^2+2y^2+4\ge x^2+y^2-1+2x^2+2y^2+4\)

\(\Rightarrow\left(x^2+2\right)\left(y^2+2\right)\ge3\left(x^2+y^2+1\right)\)

\(\Rightarrow\left(x^2+2\right)\left(y^2+2\right)\left(z^2+2\right)\ge3\left(x^2+y^2+1\right)\left(1+1+z^2\right)\ge3\left(x+y+z\right)^2\ge9\left(xy+yz+zx\right)\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;1;1\right);\left(-1;-1;-1\right)\)

Bình luận (0)

Các câu hỏi tương tự
TQ
Xem chi tiết
KK
Xem chi tiết
ZZ
Xem chi tiết
VM
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết
NT
Xem chi tiết
VT
Xem chi tiết
DT
Xem chi tiết